Biomass refinery integrated technology - Convert low-value feedstocks into high-value sustainable chemicals and degradable materials .This new technology innovatively uses new biological solvents to carry out selective physical dissolution and separation operations on biomass raw materials.
Deep within the cell walls of every plant, there is a powerful substance, which provides the second largest source of renewable carbon on Earth. As a renewable material, we believe that lignin will eventually replace fossil materials and completely transform the way we use natural resources to produce products.
In the treasure trove of natural substances, cellulose holds a unique and crucial position. At the microscopic level, cellulose is a large-molecule polysaccharide formed by the linkage of glucose molecules. It has a "aloof" nature, being insoluble in water and not readily interacting with common organic solvents.
Hemicellulose, as a kind of biopolymer, is a mixture of highly branched low-molecular-weight homopolymers and heteropolymers. It is widely distributed in plants, accounting for about 15% - 20% in coniferous wood, and 15% - 35% in broad-leaved wood and gramineous grasses. It coexists with cellulose in the plant cell wall.